Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Echo Train' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Echo Train' found in 2 terms [] and 17 definitions [], (+ 6 Boolean[] results
previous     21 - 25 (of 25)     
Result Pages : [1]  [2 3 4]  [5]
Searchterm 'Echo Train' was also found in the following services: 
spacer
News  (1)  Forum  (6)  
 
Carr Purcell SequenceInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(CPS) Sequence of a 90° RF pulse followed by repeated 180° RF pulses to produce a train of spin echoes; is useful for measuring T2.
spacer
 
Further Reading:
  Basics:
Spin echoes, CPMG and T2 relaxation - Introductory NMR & MRI from Magritek
2013   by www.azom.com    
MRI Resources 
RIS - Breast MRI - Corporations - Artifacts - Safety Products - Libraries
 
Perfusion ImagingForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(PWI - Perfusion Weighted Imaging) Perfusion MRI techniques (e.g. PRESTO - Principles of Echo Shifting using a Train of Observations) are sensitive to microscopic levels of blood flow. Contrast enhanced relative cerebral blood volume (rCBV) is the most used perfusion imaging. Both, the ready availability and the T2* susceptibility effects of gadolinium, rather than the T1 shortening effects make gadolinium a suitable agent for use in perfusion imaging. Susceptibility here refers to the loss of MR signal, most marked on T2* (gradient echo)-weighted and T2 (spin echo)-weighted sequences, caused by the magnetic field-distorting effects of paramagnetic substances.
T2* perfusion uses dynamic sequences based on multi or single shot techniques. The T2* (T2) MRI signal drop within or across a brain region is caused by spin dephasing during the rapid passage of contrast agent through the capillary bed. The signal decrease is used to compute the relative perfusion to that region. The bolus through the tissue is only a few seconds, high temporal resolution imaging is required to obtain sequential images during the wash in and wash out of the contrast material and therefore, resolve the first pass of the tracer. Due to the high temporal resolution, processing and calculation of hemodynamic maps are available (including mean transit time (MTT), time to peak (TTP), time of arrival (T0), negative integral (N1) and index.
An important neuroradiological indication for MRI is the evaluation of incipient or acute stroke via perfusion and diffusion imaging. Diffusion imaging can demonstrate the central effect of a stroke on the brain, whereas perfusion imaging visualizes the larger 'second ring' delineating blood flow and blood volume. Qualitative and in some instances quantitative (e.g. quantitative imaging of perfusion using a single subtraction) maps of regional organ perfusion can thus be obtained.
Echo planar and potentially echo volume techniques together with appropriate computing power offer real time images of dynamic variations in water characteristics reflecting perfusion, diffusion, oxygenation (see also Oxygen Mapping) and flow.
Another type of perfusion MR imaging allows the evaluation of myocardial ischemia during pharmacologic stress. After e.g., adenosine infusion, multiple short axis views (see cardiac axes) of the heart are obtained during the administration of gadolinium contrast. Ischemic areas show up as areas of delayed and diminished enhancement. The MRI stress perfusion has been shown to be more accurate than nuclear SPECT exams. Myocardial late enhancement and stress perfusion imaging can also be performed during the same cardiac MRI examination.
 
Images, Movies, Sliders:
 Normal Lung Gd Perfusion MRI  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 Left Circumflex Ischemia First-pass Contrast Enhancement  Open this link in a new window
 
Radiology-tip.comradPerfusion Scintigraphy
spacer
Medical-Ultrasound-Imaging.comBolus Injection
spacer

• View the DATABASE results for 'Perfusion Imaging' (16).Open this link in a new window


• View the NEWS results for 'Perfusion Imaging' (3).Open this link in a new window.
 
Further Reading:
  Basics:
CHAPTER 55: Ischemia
2003
EVALUATION OF HUMAN STROKE BY MR IMAGING
2000
  News & More:
Non-invasive diagnostic procedures for suspected CHD: Search reveals informative evidence
Wednesday, 8 July 2020   by medicalxpress.co    
Implementation of Dual-Source RF Excitation in 3 T MR-Scanners Allows for Nearly Identical ADC Values Compared to 1.5 T MR Scanners in the Abdomen
Wednesday, 29 February 2012   by www.plosone.org    
Motion-compensation of Cardiac Perfusion MRI using a Statistical Texture Ensemble(.pdf)
June 2003   by www.imm.dtu.dk    
Turbo-FLASH Based Arterial Spin Labeled Perfusion MRI at 7 T
Thursday, 20 June 2013   by www.plosone.org    
Measuring Cerebral Blood Flow Using Magnetic Resonance Imaging Techniques
1999   by www.stanford.edu    
Vascular Filters of Functional MRI: Spatial Localization Using BOLD and CBV Contrast
MRI Resources 
Image Quality - Open Directory Project - Artifacts - Spectroscopy - Distributors - Pathology
 
Sensitivity EncodingInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(SENSE) A MRI technique for relevant scan time reduction. The spatial information related to the coils of a receiver array are utilized for reducing conventional Fourier encoding. In principle, SENSE can be applied to any imaging sequence and k-space trajectories. However, it is particularly feasible for Cartesian sampling schemes. In 2D Fourier imaging with common Cartesian sampling of k-space sensitivity encoding by means of a receiver array enables to reduce the number of Fourier encoding steps.
SENSE reconstruction without artifacts relies on accurate knowledge of the individual coil sensitivities. For sensitivity assessment, low-resolution, fully Fourier-encoded reference images are required, obtained with each array element and with a body coil.
The major negative point of parallel imaging techniques is that they diminish SNR in proportion to the numbers of reduction factors. R is the factor by which the number of k-space samples is reduced. In standard Fourier imaging reducing the sampling density results in the reduction of the FOV, causing aliasing. In fact, SENSE reconstruction in the Cartesian case is efficiently performed by first creating one such aliased image for each array element using discrete Fourier transformation (DFT).
The next step then is to create a full-FOV image from the set of intermediate images. To achieve this one must undo the signal superposition underlying the fold-over effect. That is, for each pixel in the reduced FOV the signal contributions from a number of positions in the full FOV need to be separated. These positions form a Cartesian grid corresponding to the size of the reduced FOV.
The advantages are especially true for contrast-enhanced MR imaging such as dynamic liver MRI (liver imaging) , 3 dimensional magnetic resonance angiography (3D MRA), and magnetic resonance cholangiopancreaticography (MRCP).
The excellent scan speed of SENSE allows for acquisition of two separate sets of hepatic MR images within the time regarded as the hepatic arterial-phase (double arterial-phase technique) as well as that of multidetector CT.
SENSE can also increase the time efficiency of spatial signal encoding in 3D MRA. With SENSE, even ultrafast (sub second) 4D MRA can be realized.
For MRCP acquisition, high-resolution 3D MRCP images can be constantly provided by SENSE. This is because SENSE resolves the presence of the severe motion artifacts due to longer acquisition time. Longer acquisition time, which results in diminishing image quality, is the greatest problem for 3D MRCP imaging.
In addition, SENSE reduces the train of gradient echoes in combination with a faster k-space traversal per unit time, thereby dramatically improving the image quality of single shot echo planar imaging (i.e. T2 weighted, diffusion weighted imaging).
spacer

• View the DATABASE results for 'Sensitivity Encoding' (12).Open this link in a new window

 
Further Reading:
  News & More:
Image Characteristics and Quality
   by www.sprawls.org    
Searchterm 'Echo Train' was also found in the following services: 
spacer
News  (1)  Forum  (6)  
 
Burst Pulse SequenceInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
Burst pulse sequences are fast imaging sequences capable of image acquisition in less than 100 ms. Basically a train of low flip angle pulses generates a long train of echoes. The complete sequence is performed with the application of a constant read gradient. Phase encoding may be implemented using short phase encoding gradients between echoes.
The advantage of this sequence type is that it is less demanding on gradient speed than other fast techniques (e.g. echo planar imaging EPI) and it produces images, which are substantially free of susceptibility artifacts.
The disadvantage is that the technique is less sensitive than competing methods.
spacer
MRI Resources 
PACS - Breast Implant - Intraoperative MRI - Non-English - Diffusion Weighted Imaging - Health
 
Cardiovascular ImagingMRI Resource Directory:
 - Cardiovascular Imaging -
 
Cardiovascular MR imaging includes the complete anatomical display of the heart with CINE imaging of all phases of the heartbeat. Ultrafast techniques make breath hold three-dimensional coverage of the heart in different cardiac axes feasible. Cardiac MRI provides reliable anatomical and functional assessment of the heart and evaluation of myocardial viability and coronary artery disease by a noninvasive diagnostic imaging technique.
Cardiovascular MRI offers potential advantages over radioisotopic techniques because it provides superior spatial resolution, does not use ionizing radiation, has no imaging orientations constraints and contrast resolution better than echocardiography. It also offers direct visualization and characterization of atherosclerotic plaques and diseased vessel walls and surrounding tissues in cardiovascular research.
MRI perfusion approaches measure the alteration of regional myocardial magnetic properties after the intravenous injection of contrast agents and assess the extent of injury after a myocardial infarction and the presence of myocardial viability with a technique based on late enhancement. Extracellular MRI contrast agents, like Gd-DTPA, accumulate only in irreversibly damaged myocardium after a time period of at least 10 minutes.
This type of patients may also have an implanted cardiac stent, bypass or a cardiac pacemaker and special caution should be observed on the MRI safety and the contraindications. While a number of coronary stents have been tested and reported to be MRI compatible, coronary stents must be assessed on an individual basis, with the medical team weighing the risks and benefits of the MRI procedure.

Cardiac MRI overview:
•
Myocardial perfusion imaging and viability
•
Calculation of ventricular volume, myocardial mass and wall thickness
•
Functional parameters
•
Description of a stenosis or aneurysma
•
Anatomical display of the heart, vessels and the surrounding tissue

Cardiovascular MRI has become one of the most effective noninvasive imaging techniques for almost all groups of heart and vascular disease.
 
Images, Movies, Sliders:
 Angulation of Cardiac Planes Cine Images of Septal Infarct  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 Left Circumflex Ischemia First-pass Contrast Enhancement  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 Delayed Myocardial Contrast Enhancement from Infarct  Open this link in a new window
 
spacer

• View the DATABASE results for 'Cardiovascular Imaging' (18).Open this link in a new window


• View the NEWS results for 'Cardiovascular Imaging' (6).Open this link in a new window.
 
Further Reading:
  Basics:
Cardiac MRI - Technical Aspects Primer
Wednesday, 7 August 2002
Coronary Artery Disease: Combined Stress MR Imaging Protocol-One-Stop Evaluation of Myocardial Perfusion and Function1
   by radiology.rsnajnls.org    
A Guide To Cardiac Imaging
   by www.simplyphysics.com    
  News & More:
New Imaging Technique Reveals Different Heart Motions by Age, Gender
Thursday, 10 December 2009   by www.sciencedaily.com    
MRI Resources 
Absorption and Emission - Spine MRI - MRI Training Courses - Libraries - Non-English - Quality Advice
 
previous      21 - 25 (of 25)     
Result Pages : [1]  [2 3 4]  [5]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 29 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]